

NIA Workshop, Kathmandu 18-19 July, 2002

Parallel Studies to the Malé Declaration

Johan Kuylenstierna SEI Harry Vallack SEI Iyngara Mylvakanam UNEP/RRC-AP Subrato Sinha UNEP/RRC-AP

Parallel Studies to the Malé Declaration

- 1.1 Integrated Assessment Model (IAM)
- 1.2 Atmospheric transfer modelling
- 2 Emissions Inventory Manual and Spreadsheet

Integrated Assessment Model IAM

- Development requested as a priority action for the implementation of the Malé Declaration by NIAs during Phase I
- Decision support tool to investigate pollutant emissions, atmospheric transfer, deposition and evaluate impacts
- Tool allowing integration of the different elements relevant to transboundary air pollution to facilitate policy analysis

Process of Developing an IAM for the Malé Declaration

A. Consultation

Consult with NIAs and NFPs over their requirements, questions and information they require from this decision support tool

- ascertain needs of countries
- determine emission regions
- determine which pollutants
- which baseline year

B. Malé IAM Version 1 development

Carry out development of Version 1 of the Malé IAM tool according to the NIA requirements through activities by SEI, UNEP/RRC-AP, SMHI and SACEP

- Establish database formats and IAM structure
- SMHI develop region-to-grid transfer coefficients
- Develop acidification/crop yield/eutrophication impact criteria
- Develop model at UNEP/RRC-AP
- Consult with NIAs and NFPs over initial development and make plans for next steps

Proposed Malé IAM Structure

The MATCH Atmospheric Transfer Model

- Developed by SMHI in Sweden and modified for application in Asia
- Flexible research tool to investigate the atmospheric transfer of pollutants (S and N) over large distances
- Inputs are mainly weather data (every 6 hours) and emissions
- The model has a chemistry module where transformations take place
- It also has a deposition module in rainfall and as dry deposition (gases and aerosols)
- Needs to be verified by the monitoring network

Sulphur deposition calculated using the SMHI MATCH model

The Malé Declaration Air Pollutant Emissions Inventory Manual

Outline Draft: July, 2002

Implementation of the Malé Declaration on Control and Prevention of Air Pollution and its Likely Transboundary Effects

₿SEI

Aim and objective of the parallel activity on emissions inventories

Aim:

each country of the Malé Declaration to compile (during Phase III) air pollutant emission inventories which are compatible with each-other and with the Integrated Assessment Model (IAM)

Objective:

to produce, in consultation with the NIAs and S. Asian experts, a manual and associated software (Excel-based workbook) for use by the Malé Declaration countries in compiling these emission inventories

Process for developing the manual and workbook

- development of an IAM (including an emission inventory) identified by NIAs as a priority
- This activity **builds on earlier work** carried out during Phase I especially the *Guidelines for the Preparation of Baseline Studies* and the *Emission Inventory Database*.
- The manual and workbook will be developed in **consultation with the NIAs** and regional experts
- An expert workshop will be held immediately after the July 2003 NIA meeting in order to review and further tailor the manual to regional needs.
- Malé Declaration countries will then use the manual to develop emission inventories in Phase III

Suggested pollutants for inclusion in manual

- Sulphur dioxide (SO₂)
- Nitrogen oxides (NO_X)
- Particulate matter (PM)
- Ammonia (NH₄)
- Non-methane volatile organic compounds (NMVOCs)

Summary of emission source categories used in the manual

Energy sources:

- 1 Combustion in the Energy Industries
- 2 Combustion in Manufacturing Industries and Construction
- 3 Transport
- 4 Combustion in Other Sectors

Other source sectors:

- 5 Fugitive emission from fuels
- 6 Industrial Processes
- 7 Solvent and Other Product Use
- 8 Agriculture
- 9 Vegetation Fires & Forestry
- 10 Waste
- 11 Natural sources

Breakdown of energy source sectors

Sector	Sub-sector	Sub-sub sector
1. Combustion in Energy industries	Public Electricity and Heat Production	
	Petroleum Refining	
	Manufacture of Solid Fuels and Other	Coke ovens
	Energy:	Patent fuel, BKB
		Gas works
·		Charcoal production
2. Combustion in	Iron and steel	
Manufacturing	Non-ferrous metals	
Industries	Chemicals	
and Construction	Pulp, paper and print	
	Food, beverages and tobacco	
	Textiles and leater	
	Other	
3. Transport	Civil Aviation	
	Road transport	
	Railways	
	Navigation	
	Pipeline transport	
	Other	
4 Combustion in other	Commercial/Institutional	
sectors	Residential	
	Agriculture/Forestry/Fishing	

Fuel combustion sectors – Fuel categories

Coal	Gas	Oil	Combustible Renewables / wastes		
Coking Coal	Gas Works Gas (GWG)	Crude Oil	Solid Biomass and Animal Products:		
Other Bituminous Coal & Anthracite	Natural Gas	Natural Gas Liquids (NGL)	Wood		
Sub-Bituminous Coal		Refinery Gas	Vegetal materials and wastes		
Lignite		Liquefied Petroleum Gases (LPG)	Other (e.g. Animal products/wastes)		
Patent Fuel		Motor Gasoline	Gas/Liquids from Biomass + wastes		
Coke Oven Coke		Aviation Gasoline	Municipal Waste		
Gas Coke		Gasoline type Jet Fuel	Industrial Waste		
BKB (Brown coal briquettes)		Kerosene type Jet Fuel	Charcoal		
Coke Oven Gas (COG)		Kerosene			
Blast Furnace Gas (BFG)		Gas/Diesel Oil			
		Residual Fuel Oil (RFO)			
		Other Petroleum Products			

General approach for calculation of emissions

Unless measured directly, emission are generally estimated using emission factors:

Emission = (emission factor) x (activity rate)

Emission Factors (EFs)

EFs are the rate of emission of a pollutant per unit of activity (e.g. kg NO_x per TJ coal burnt; kg SO_2 per tonne copper smelted)

The manual and associated workbook will contain suggested default EFs

Currently, default EFs mostly derived from European or North American source documents (e.g. EMEP/Corinair; USEPA AP-42; IPCC Guidelines)

Locally-derived EFs, more appropriate to South Asia, should be used where possible

Reliable EFs for the region will be collected and incorporated into the manual (and workbook) after consultation with local experts

Activity rates

Examples:

- For *fuel combustion*, the "activity rate" is the annual rate of consumption of a fuel (e.g. TJ coal burnt per year).
- For *industrial process emissions* the "activity rate" is the annual rate of production of the commodity (e.g. tonnes copper per year).

Sources of activity data:

- National statistical yearbooks/compendia with state/provincial breakdown of data if possible.
- International compendia:

OECD/IEA Energy Statistics and Balances of non-OECD Countries

United Nations, Energy Statistics Yearbooks

United Nations, Industrial Commodity Statistics Yearbooks

Top-down or bottom up approach?

- Depends on data availability flexibility crucial
- If national data only then top-down
- If state/provincial data still top-down but better spatial allocation
- If large point source (LPS) data bottom-up
- National and LPS sources can be inventoried together the workbook will automatically adjust national activity data to avoid 'double-counting'.

Road transport emissions – detailed or simple method?

- Emission Factors usually depend on vehicle type, age, fuel type, emission controls and so forth.
- If only national fuel consumption data available *simple method* using average 'bulk' emission factors allows rough estimate.
- If data on fleet composition and average distance travelled per vehicle class per year are available – detailed method recommended.
- Workbook will permit either method.

Mobile emissions of NO_x (detailed) for on-road vehicles

EMISSIONS INVENTORY WORKBOOK TEMPLATE

Sector: Transport (Detailed method)

Sub-sector: Road transportation

BACK TO MENU

		A	В	с	D		E
			Average distance	Total distance	NO _x em	ission	NO _x emissions
		Number of	travelled per vehicle	travelled (km/yr)	factor	(g/km)	(Tonnes)
							E = C x
Fuel	Vehicle class	vehicles in use	(km/yr)	C = A x B		Default	D/1000000
Gasoline Passenger cars Light-duty vehicles Heavy-duty vehicle Motorcycles < 50cc	Passenger cars			0		1.89 ^b	0
	Light-duty vehicles			0		2.94°	0
	Heavy-duty vehicles			0		6.75 ^d	0
	Motorcycles < 50cc (2-stroke)			0		0.05 ^e	0
	Motorcycles > 50cc (2-stroke)			0		0.08 ^f	0
м	Motorcycles (4-stroke)			0		0.3 ^g	0
Diesel	Passenger cars			0		0.67 ^h	0
	Light-duty vehicles			0		1.44 ⁱ	0
	Heavy-duty vehicles			0		10.9 ⁱ	0
LPG	Passenger cars			0		2.16 ^k	0
	Light-duty vehicles			0			0
	Heavy-duty vehicles			0		5.7 ¹	0
Total							0

Step-by-step guide to using workbook

Fuel combustion activities:

Sector 3 - Transport (detailed method)

Sub-sector: Road transportation

Sheet 1.9.3 Mobile emissions of NO_x, CO, NMVOC, PM₁₀ and PM_{2.5} (detailed) for on-road vehicles.

- Step 1 Enter in column A the average number of vehicles in use, for each vehicle class, during the year.
- Step 2 Enter in column B the average distance travelled (kilometres per year) for each vehicle class .
- Step 3 Enter in column D the NOx emission factor (grammes NOx per kilometre) for each vehicle class.
- Step 4 Enter in column F the CO emission factor (grammes CO per kilometre) for each vehicle class
- Step 5 Enter in column H the NMVOC emission factor (grammes per kilometre) for each vehicle class .
- Step 6 Enter in column J the PM₁₀ emission factor (grammes per kilometre) for each vehicle class .

Questionnaire

Expectations and requirements of NIAs for emission inventory manual and workbook including:

- Pollutants to be included
- Emissions source sector structure
- Fuel category breakdown
- Large point source (LPS) criteria
- Regional/sub-regional/grid breakdown of emissions

Questionnaires to be returned to UNEP/RRC-AP by September 2002